Intermediate Algebra

ELEVENTH EDITION

LIAL HORNSBY MCGINNIS

Intermediate Algebra

Eleventh Edition

Margaret L. Lial

American River College

John Hornsby

University of New Orleans

Terry McGinnis

VP, Courseware Portfolio Management: Director, Courseware Portfolio Management: Courseware Portfolio Manager: Courseware Portfolio Assistant: Content Producer: Managing Producer: Producer: Manager, Courseware Quality Assurance: Manager, Content Development: Product Marketing Manager: Product Marketing Assistant: Field Marketing Managers: Senior Author Support/Technology Specialist: Manager, Rights and Permissions: Manufacturing Buyer:

Associate Director of Design: Program Design Lead: Text Design, Production Coordination, Composition, and Illustrations: Cover Design: Chris Hoag Michael Hirsch Matthew Summers Shannon Bushee Sherry Berg Karen Wernholm Shana Siegmund Mary Durnwald **Rebecca Williams** Alicia Frankel Hanna Lafferty Jennifer Crum, Lauren Schur Joe Vetere Gina Cheselka Carol Melville, LSC Communications Blair Brown Barbara Atkinson

Cenveo[®] Publisher Services Studio Montage

jomphong/Shutterstock Cover Image:

Copyright © 2018, 2014, 2010 by Pearson Education, Inc. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Attributions of third-party content appear on page P-1, which constitutes an extension of this copyright page.

PEARSON, ALWAYS LEARNING, and MYMATHLAB are exclusive trademarks owned by Pearson Education, Inc. or its affiliates in the U.S. and/or other countries.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

Library of Congress Cataloging-in-Publication Data

Names: Lial, Margaret L. | Hornsby, John, 1949- | McGinnis, Terry. Title: Intermediate algebra / Margaret Lial, John Hornsby, Terry McGinnis. Description: 11th edition, [paperback edition]. | Boston : Pearson, 2017. Identifiers: LCCN 2016010731 | ISBN 9780134494074 (pbk. : alk. paper) Subjects: LCSH: Algebra—Textbooks. Classification: LCC QA152.3 .L535 2017 | DDC 512.9—dc23 LC record available at http://lccn.loc.gov/2016010731

16

ISBN 13: 978-0-13-449407-4 ISBN 10: 0-13-449407-5

To Dotty, Puddles, and Gus. You loved us unconditionally.

E.J.H. and T.R.M.

This page intentionally left blank

Contents

Preface

CHAPTER R Review of the Real Number System

- R.1 Basic Concepts
 R.2 Operations on Real Numbers
 R.3 Exponents, Roots, and Order of Operations
 R.4 Properties of Real Numbers
 Summary 42 Test 44
- Summary 150 Review Exercises 153 Mixed Review Exercises 156 • Test 157 • Cumulative Review Exercises Chapters R–2 159

Cł	HAPTER 3	Graphs, Linear Equations, and Functions	161
3.1	The Recta	ngular Coordinate System	162
St	udy Skills	Analyzing Your Test Results	175
3.2	The Slope	of a Line	176
3.3	3 Linear Equations in Two Variables		190

204

205

214

225

245

246

261

262

271

Study Skills Using Your Math Text	45	3.3 Linear Equations in Two Variables
Study Skills Reading Your Math Text	46	Summary Exercises Finding Slopes and Equations of Lines
CHAPTER 1 Linear Equations and Applications	47	 3.4 Linear Inequalities in Two Variables 3.5 Introduction to Relations and Functions 3.6 Function Notation and Linear Functions
1.1 Linear Equations in One Variable	48	Summary 233 • Review Exercises 237 • Mixed
Study Skills Completing Your Homework	59	Review Exercises 240 • Test 241 • Cumulative
1.2 Formulas and Percent	60	Review Exercises Chapters R–3 243
Study Skills Managing Your Time	73	CHAPTER 4 Systems of Linear Equations
1.3 Applications of Linear Equations	74	GINAI IER 4 Systems of Effect Equations
Study Skills Taking Lecture Notes	88	4.1 Systems of Linear Equations in Two Variables
1.4 Further Applications of Linear Equations	89	Study Skills Preparing for Your Math Final Exam
Summary Exercises Applying Problem-Solving Techniques	98	4.2 Systems of Linear Equations in Three Variables
Study Skills Reviewing a Chapter	100	4.3 Applications of Systems of Linear Equations
Summary 101 • Review Exercises 104 • Mixed Review Exercises 107 • Test 108		Summary 287 • Review Exercises 290 • Mixed Review Exercises 292 • Test 293 • Cumulative Review Exercises Chapters R-4 295

vii

1

1

13

24

34

Review Exercises Chapters R-4 295

CHAPTER 2 Linear Inequalities and Absolute Value	109	CHAPT
2.1 Linear Inequalities in One Variable	110	5.1 Inte
Study Skills Using Study Cards	124	5.2 Scie
2.2 Set Operations and Compound Inequalities	125	5.3 Add
Study Skills Using Study Cards Revisited	134	5.4 Poly 5.5 Mu
2.3 Absolute Value Equations and Inequalities	135	5.6 Div
Summary Exercises Solving Linear and Absolute Value Equations and Inequalities	147	Summar Review I
Study Skills Taking Math Tests	149	Review I

Cł	APTER 5	Exponents, Polynomials, and Polynomial Functions	297
5.1	Integer Ex	ponents	298
5.2	Scientific Notation		
5.3	Adding and Subtracting Polynomials 3		
5.4	Polynomial Functions and Graphs 32		
5.5	Multiplying Polynomials 32		329
5.6	Dividing Polynomials		339
Sum	nmary 347	• Review Exercises 351 • Mixed	
Rev	iew Exerci	ses 354 • Test 355 • Cumulative	
Rev	Review Exercises Chapters R-5 357		

vi Contents

CHAPTER 6 Factoring

359

360

381

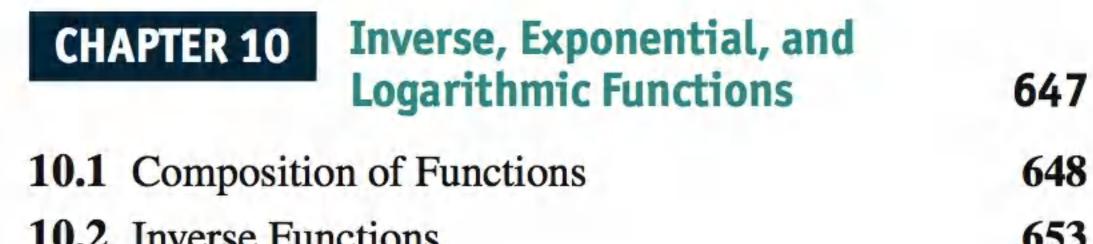
405

559

560

571

- 6.1 Greatest Common Factors and Factoring by Grouping
- 6.2 Factoring Trinomials 367
- 6.3 Special Factoring 375
- 6.4 A General Approach to Factoring
- 6.5 Solving Equations Using the Zero-Factor Property 386


Summary 396 • Review Exercises 399 • Mixed Review Exercises 401 • Test 402 • Cumulative Review Exercises Chapters R-6 403

Rational Expressions and Functions

7.1 Rational Expressions and Functions; Multiplying and Dividing

9.3	Equations Quadratic in Form	579
Sum	mary Exercises Applying Methods for Solving	
Quad	dratic Equations	590
9.4	Formulas and Further Applications	592
9.5	Graphs of Quadratic Functions	602
9.6	More about Parabolas and Their Applications	612
9.7	Polynomial and Rational Inequalities	624
Sun	mary 635 • Review Exercises 639 • Mixed	
Rev	iew Exercises 642 • Test 643 • Cumulative	
Rev	iew Exercises Chapters R-9 645	

	Multiplying and Dividing	406	
7.2	.2 Adding and Subtracting Rational Expressions		
7.3	Complex Fractions		
7.4	Equations with Rational Expressions and Graphs	434	
	mary Exercises Simplifying Rational Expressions olving Rational Equations	442	
7.5	Applications of Rational Expressions	444	
7.6	Variation	457	
Sum	mary 467 • Review Exercises 471 • Mixed		
Rev	iew Exercises 474 • Test 475 • Cumulative		
Rev	iew Exercises Chapters R-7 477		

Cł	HAPTER 8 Roots, Radicals, and Roo	t
_	Functions	479
8.1	Radical Expressions and Graphs	480
8.2	Rational Exponents	489
8.3	Simplifying Radical Expressions	
8.4	Adding and Subtracting Radical Expres	sions 512
8.5	8.5 Multiplying and Dividing Radical Expressions	
C	many Evering Derforming Onerations wit	-h-

10.2 Inverse Functions	053	
10.3 Exponential Functions	662	
10.4 Logarithmic Functions	670	
10.5 Properties of Logarithms	678	
10.6 Common and Natural Logarithms	686	
10.7 Exponential and Logarithmic Equations and Their Applications	692	
Summary 701 • Review Exercises 705 • Mixed		
Review Exercises 708 • Test 709 • Cumulative		
Review Exercises Chapters R-10 711		

CHAPTER 11	Nonlinear Functions, Conic Sections, and Nonlinear Systems	713
11.1 Addition	al Graphs of Functions	714
11.2 Circles an	nd Ellipses	721
11.3 Hyperbol	as and Functions Defined by Radicals	731
11.4 Nonlinea	r Systems of Equations	739
11.5 Second-I of Inequa	Degree Inequalities and Systems alities	746
Review Exerc	tises 758 • Test 759 • Cumulative tises Chapters R–11 761 Review of Fractions	763
Appendix B	Synthetic Division	775
Appendix C	Solving Systems of Linear Equations by Matrix Methods	781
Answers to Se	elected Exercises	A-1
Photo Credits		P-1
Index		I-1

Sum	mary Exercises Performing Operations with	
Radi	cals and Rational Exponents	527
8.6	Solving Equations with Radicals	529
8.7	Complex Numbers	538
Sun	mary 547 • Review Exercises 551 • Mixed	
Rev	iew Exercises 554 • Test 555 • Cumulative	
Rev	iew Exercises Chapters R-8 557	

CHAPTER 9 Quadratic Equations, Inequalities, and Functions

- 9.1 The Square Root Property and Completing the Square
- 9.2 The Quadratic Formula

Preface

It is with great pleasure that we offer the eleventh edition of *Intermediate Algebra*. We have remained true to the original goal that has guided us over the years—to provide the best possible text and supplements package to help students succeed and instructors teach. This edition faithfully continues that process through enhanced explanations of concepts, new and updated examples and exercises, student-oriented features like Pointers, Cautions, Problem-Solving Hints, Margin Problems, and Study Skills, as well as an extensive package of helpful supplements and study aids.

This text is part of a series that also includes the following books:

- Basic College Mathematics, Tenth Edition, by Lial, Salzman, and Hestwood
- Prealgebra, Sixth Edition, by Lial and Hestwood
- Introductory Algebra, Eleventh Edition, by Lial, Hornsby, and McGinnis
- Introductory and Intermediate Algebra, Sixth Edition, by Lial, Hornsby, and McGinnis
- Developmental Mathematics: Basic Mathematics and Algebra, Fourth Edition, by Lial, Hornsby, McGinnis, Salzman, and Hestwood

WHAT'S NEW IN THIS EDITION

We are pleased to offer the following new text features and supplements.

- Revised Exposition With each edition of the text, we continue to polish and improve discussions and presentations of topics to increase readability and student understanding. We believe this edition is the best yet in this regard.
- More Figures and Diagrams For visual learners, we have made a concerted effort to add mathematical figures, diagrams, tables, and graphs whenever possible.
- Enhanced Use of Pedagogical Color We have thoroughly reviewed all pedagogical color in discussions and examples and increased its use wherever doing so would enhance concept development, emphasize important steps, or highlight key information.
- Improved Study Skills Most of these special activities now include a Now Try This section to increase student involvement. Each is designed independently to allow flexible use with individuals or small groups of students, or as a source of material for in-class discussions.
- More What Went Wrong? Exercises We have increased the number of these popular CONCEPT CHECK exercises, which highlight common student errors.
- ► *More Relating Concepts Exercises* We have increased the number of these flexible groups of exercises, located at the end of many exercise sets. Specially written to help students tie concepts together, as well as compare and contrast ideas, identify and describe patterns, and extend concepts to new situations, these sets of problems may be used with individual students or collaboratively with pairs or small groups. All of these exercise sets have been added to MyMathLab and tagged for easy location and assignment.
- Dedicated Mixed Review Exercises Each chapter review has been expanded to include a one-page set of Mixed Review Exercises to help students further synthesize concepts.
- ► Learning Catalytics This interactive student response tool uses students' own devices to engage them in the learning process. Learning Catalytics is accessible through MyMathLab and can be customized to an instructor's specific needs. Instructors can employ this tool to generate class discussion, promote peer-to-peer learning, and use real-time data to adjust instructional strategy. As an introduction to this exciting new tool, we have provided prerequisite skills questions at the beginning of each section to check students' preparedness for the new section. Learn more about Learning Catalytics in the Instructor Resources tab in MyMathLab.

viii Preface

- Enhanced MyMathLab Resources Exercise coverage has been refined with new videos and homework problems, including new Relating Concepts questions added throughout the course. See pages x and xi for more details.
- Data Analytics We analyzed aggregated student usage and performance data from MyMathLab for the previous edition of this text. The results of this analysis helped us improve the quality and quantity of exercises that matter the most to instructors and students.

CONTENT CHANGES

Specific content changes include the following:

- Exercise sets have been updated with a renewed focus on conceptual understanding, skill development, and review. New or revised figures are included wherever possible.
- ▶ Real-world data in the examples and exercises has been updated.
- Sections 1.4, 2.3, and 4.3 include new problem-solving objectives, examples, exercises, and/or hints. Section 1.2 provides new formulas from the health care industry.
- The presentation on linear equations in two variables in Section 3.1 has been reorganized. New exercises have been added in Sections 3.1–3.3 to make better connections among tables, equations, and graphs of linear equations.
- The introduction to relations and functions in Section 3.5 has a new example and expanded discussion on relations and ordered pairs.
- Scientific notation is covered separately in Section 5.2.
- Increased connections between operations with rational numbers and operations with rational expressions are made in Sections 7.1–7.3.
- The following topics are among those that have been enhanced and/or expanded: Solving linear equations in one variable with fraction and decimal coefficients (Section 1.1) Graphing linear inequalities in two variables (Section 3.4) Solving systems of linear equations in three variables (Section 4.2) Factoring sums and differences of cubes (Section 6.3) General factoring strategies (Section 6.4) Determining domains of rational functions (Sections 7.1, 7.4) Solving rational equations (Section 7.4) Multiplying radical expressions (Section 8.5) Solving quadratic equations using the zero-factor property and the quadratic formula (Sections 9.1, 9.2) Solving quadratic inequalities (Section 9.7)

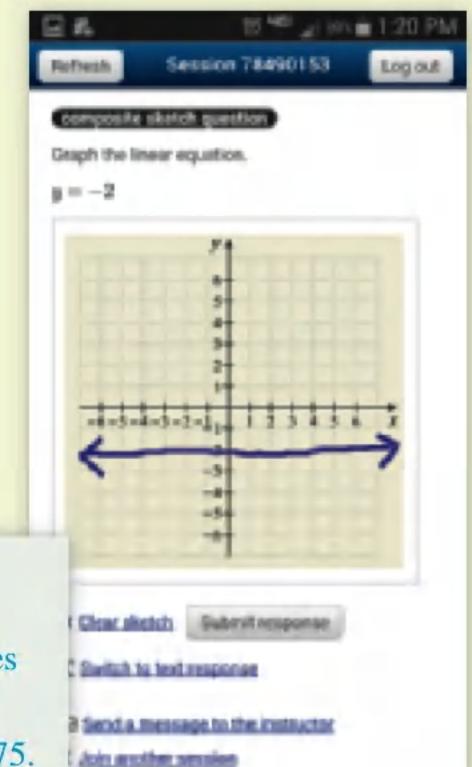
Finding and graphing inverse functions (Section 10.2) Graphing systems of linear inequalities (Section 11.5)

HALLMARK FEATURES

We have enhanced the following popular features, each of which is designed to increase ease of use by students and/or instructors.

Emphasis on Problem-Solving We introduce our six-step problem-solving method in Chapter 1 and integrate it throughout the text. The six steps, *Read, Assign a Variable, Write an Equation, Solve, State the Answer, and Check, are emphasized in boldface type and repeated in examples and exercises to reinforce the problem-solving process for students. We also provide students with Problem-Solving Hint boxes that feature helpful problem-solving tips and strategies.*

- ► Helpful Learning Objectives We begin each section with clearly stated, numbered objectives, and the included material is directly keyed to these objectives so that students and instructors know exactly what is covered in each section.
- Popular Cautions and Notes One of the most popular features of previous editions, we include information marked **(CAUTION** and **Note** to warn students about common errors and emphasize important ideas throughout the exposition. The updated text design makes them easy to spot.
- **Comprehensive Examples** The new edition features a multitude of step-by-step, worked-out examples that include pedagogical color, helpful side comments, and special pointers. We give special attention to checking example solutions—more checks, designated using a special CHECK tag and \checkmark , are included than in past editions.
- **•** Guided Solutions Selected exercises in the margins and in the exercise sets, marked with a GS icon, show the first few solution steps. Many of these exercises can be found in the MyMathLab homework, providing guidance to students as they start learning a new concept or procedure.
- More Pointers Because they were so well received by both students and instructors in
 - the previous edition, we incorporate more pointers in examples and discussions throughout this edition of the text. They provide students with important on-the-spot reminders and warnings about common pitfalls.
- Ample Margin Problems Margin problems, with answers immediately available at the bottom of the page, are found in every section of the text. This key feature allows students to immediately practice the material covered in the examples in preparation for the exercise sets. Many include guided solutions.
- ► Updated Figures, Photos, and Hand-Drawn Graphs Today's students are more visually oriented than ever. As a result, we include appealing mathematical figures, diagrams, tables, and graphs, including a "hand-drawn" style of graphs, whenever possible. We have incorporated depictions of well-known mathematicians as well as photos to accompany applications in examples and exercises.
- **Relevant Real-Life Applications** We include many new or updated applications from fields such as business, pop culture, sports, technology, and the health sciences that show the relevance of algebra to daily life.
- **Extensive and Varied Exercise Sets** The text contains a wealth of exercises to provide students with opportunities to practice, apply, connect, review, and extend the skills they are learning. Numerous illustrations, tables, graphs, and photos help students visualize the problems they are solving. Problem types include skill-building and writing exercises, as well as applications, matching, true/false, multiple-choice, and fill-in-the-blank problems.


- In the Annotated Instructor's Edition of the text, the writing exercises are marked with an icon icon icon icon that instructors may assign these problems at their discretion. Students can watch an instructor work through the complete solution for all exercises marked with a Play Button icon **D** in MyMathLab.
- **Special Summary Exercises** We include a set of these popular in-chapter exercises in many chapters. They provide students with the all-important mixed review problems they need to master topics and often include summaries of solution methods and/or additional examples.
- ► Step-by-Step Solutions to Selected Exercises Exercise numbers enclosed in a blue square, such as 11., indicate that a worked-out solution for the problem is available in MyMathLab. These solutions are given for selected exercises that most commonly cause students difficulty.

Resources for Success MyMathLab Online Course for Lial/Hornsby/ McGinnis Intermediate Algebra, 11th edition

The corresponding MyMathLab course tightly integrates the authors' approach, giving students a learning environment that encourages conceptual understanding and engagement.

NEW! Learning Catalytics

Integrated into MyMathLab, Learning Catalytics use students' mobile devices for an engagement, assessment, and classroom intelligence system that gives instructors real-time feedback on student learning. LC annotations for instructors in the text provide corresponding questions that they

Pearson

can use to engage their classrooms.

LC LEARNING CATALYTICS

1. Which digit in the number 40,163 is in the ones place?

2. Identify the place value of 8 in the number 9875.

5.5.14-GS

E Cuestion Help

Complete the division.

2x = 6)12x³ = 28x² = 8x = 48

To begin, set up the polynomials in a long division format if they aren't already written that way. Place them in descending order. Also, write in any missing terms, if necessary.

2x - 6)12x³ - 28x² - 8x - 48

What is the first slep?

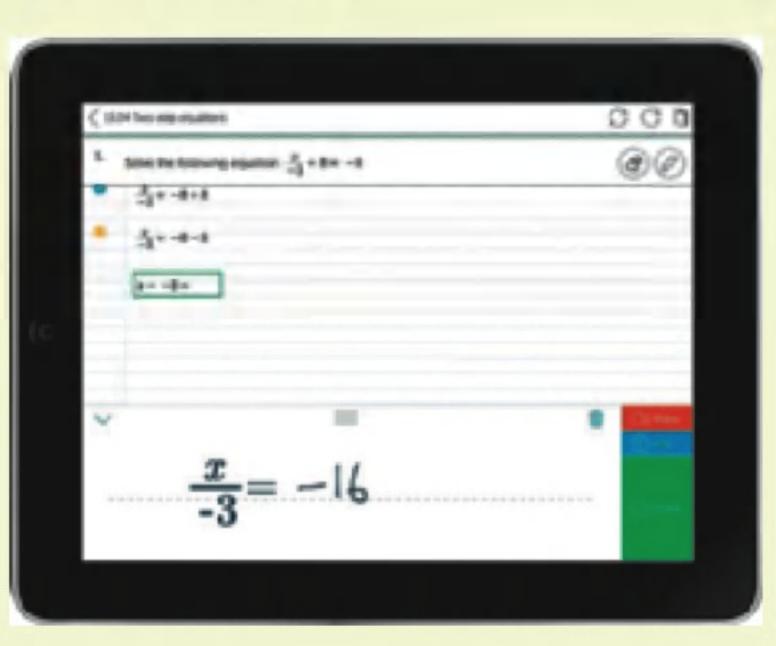
C A. Divide the first term of the dividend by the first term of the divisor.

O B. Divide the second term of the dividend by the second term of the divisor.

O C. Divide the first term of the dividend by the second term of the divisor.

O D. Multiply the first term of the dividend by the first term of the divisor.

Click to select your answer and then click Check Answer.

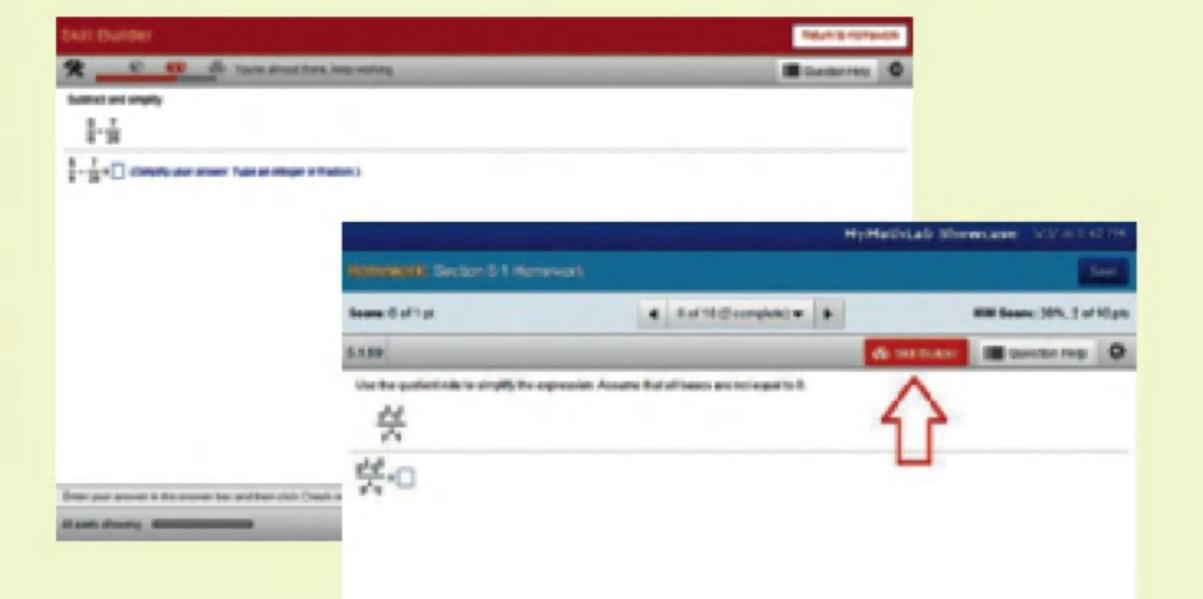

10 perts

Clear All

Expanded! Conceptual Exercises

In addition to MyMathLab's hallmark interactive exercises, the Lial team provides students with exercises that tie concepts together and help students problem-solve. Guided Solutions exercises, marked with a "GS" in the Assignment Manager, test student understanding of the problem-solving steps while guiding them through the solution process. Relating Concepts exercises in the text help students make connections and problem-solve at a higher level. These sets are assignable in MyMathLab, with expanded coverage.

NEW! Workspace Assignments


These new assignments allow students to naturally write out their work by hand, step-by-step, showing their mathematical reasoning as they receive instant feedback at each step. Each student's work is captured in the MyMathLab gradebook so instructors can easily pinpoint exactly where in the solution process students struggled.

www.mymathlab.com

Resources for Success

NEW! Adaptive Skill Builder

When students struggle on an exercise, Skill Builder assignments provide just-in-time, targeted support to help them build on the requisite skills needed to complete their assignment. As students progress, the Skill Builder assignments adapt to provide support exercises that are personalized to each student's activity and performance throughout the course.

Pearson

Instructor Resources Annotated Instructor's Edition

ISBN 10: 0-13-445616-5 **ISBN 13:** 978-0-13-445616-4 The AIE provides annotations for instructors, including answers, Learning Catalytics suggestions, and vocabulary and teaching tips.

The following resources can be downloaded from www.pearsonhighered.com or in MyMathLab:

Instructor's Solutions Manual

This manual provides solutions to all exercises in the text.

Instructor's Resource Manual

This manual includes Mini-Lectures to provide

Student Resources Student Solutions Manual

ISBN 10: 0-13-444595-3 **ISBN 13:** 978-0-13-444595-3 This manual contains completely worked-out solutions for all the odd-numbered exercises in the text.

Lial Video Workbook

ISBN 10: 0-13-445613-0 **ISBN 13:** 978-0-13-445613-3 This workbook/note-taking guide helps students develop organized notes as they work along with the videos. The notebook includes

- Guided Examples to be used in conjunction with the Lial Section Lecture Videos and/or Objective-Level Video clips, plus corresponding Now Try This exercises for each text objective.
- Extra practice exercises for every section of the text, with ample space for students to show their work.

new instructors with objectives, key examples, and teaching tips for every section of the text.

PowerPoints

These slides, which can be edited, present key concepts and definitions from the text.

TestGen

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text. Learning objectives and key vocabulary terms for every text section, along with vocabulary practice problems.

www.mymathlab.com

ACKNOWLEDGMENTS

The comments, criticisms, and suggestions of users, nonusers, instructors, and students have positively shaped this text over the years, and we are most grateful for the many responses we have received. The feedback gathered for this revision of the text was particularly helpful, and we especially wish to thank the following individuals who provided invaluable suggestions for this and the previous editions:

Mary Kay Abbey, Montgomery College Randall Allbritton, Daytona State College Theresa Allen, University of Idaho Sonya Armstrong, West Virginia State College Linda Beller, Brevard Community College Carla J. Bissell, University of Nebraska at Omaha Vernon Bridges, Durham Technical Community College Steve Boast, Lake Sumter Community College Dawn Cox, Cochise College Joseph S. de Guzman, M.S., Norco College Julie Dewan, Mohawk Valley Community College Lucy Edwards, Las Positas College Rob Farinelli, Community College of Allegheny—Boyce Campus Adele A. Hamblett, Bunker Hill Community College Anthony Hearn, Community College of Philadelphia Jeffrey Kroll, Brazosport College Barbara Krueger, Cochise College Sandy Lofstock, California Lutheran University Janice Rech, University of Nebraska at Omaha Dwight Smith, Big Sandy Community and Technical College Theresa Stalder, University of Illinois–Chicago Mark Tom, College of the Sequoias

Ingrid Wallace, Lee College

Over the years, we have come to rely on an extensive team of experienced professionals. Our sincere thanks go to these dedicated individuals at Pearson Arts & Sciences, who worked hard to make this revision a success: Chris Hoag, Michael Hirsch, Sherry Berg, Shana Siegmund, Matt Summers, Alicia Frankel, and Ruth Berry.

We are especially pleased to welcome Callie Daniels to our team. She thoroughly reviewed all chapters and helped extensively with manuscript preparation. Special thanks to Shannon d'Hemecourt, who assisted once again with updating real data applications.

We are also grateful to Carol Merrigan and Marilyn Dwyer of Cenveo, Inc., for their excellent production work; Connie Day for her copyediting expertise; Cenveo for their photo research; and Lucie Haskins for producing another accurate, useful index. Jack Hornsby, Paul Lorczak, and Sarah Sponholz did a thorough, timely job accuracy checking page proofs and Jack Hornsby checked the index.

We particularly thank the many students and instructors who have used this text over the years. You are the reason we do what we do. It is our hope that we have positively impacted your mathematics journey. We would welcome any comments or suggestions you might have via email to math@pearson.com.

> John Hornsby Terry McGinnis

Review of the Real Number System

R.1 Basic Concepts

R.2 Operations on Real Numbers

R.3 Exponents, Roots, and Order of Operations

R.4 Properties of Real Numbers

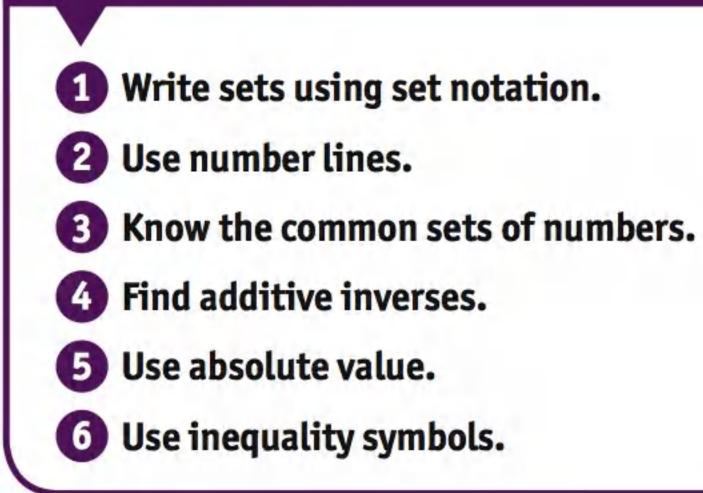
Study Skills Using Your Math Text **Study Skills** Reading Your Math Text

OBJECTIVE 1 Write sets using set notation. A set is a collection of objects called the elements, or members, of the set. In algebra, the elements of a set are usually numbers. Set braces, {}, are used to enclose the elements. For example, 2 is an element of the set {1, 2, 3}. Because we can count the number of elements in the set {1, 2, 3}, it is a finite set.

In algebra, we refer to certain sets of numbers by name. The set

 $N = \{1, 2, 3, 4, 5, 6, ...\}$ Natural (counting) numbers

is the **natural numbers**, or the **counting numbers**. The three dots (*ellipsis points*) show that the list continues in the same pattern indefinitely. We cannot list all of the elements of the set of natural numbers, so it is an **infinite set**. Including 0 with the set of natural numbers gives the set of **whole numbers**.


 $W = \{0, 1, 2, 3, 4, 5, 6, ...\}$ Whole numbers

The set containing no elements is the empty set, or null set, usually written \emptyset . For example, the set of whole numbers less than 0 is \emptyset .

O CAUTION

Do not write $\{\emptyset\}$ for the empty set. $\{\emptyset\}$ is a set with one element, \emptyset . Use the notation \emptyset for the empty set.

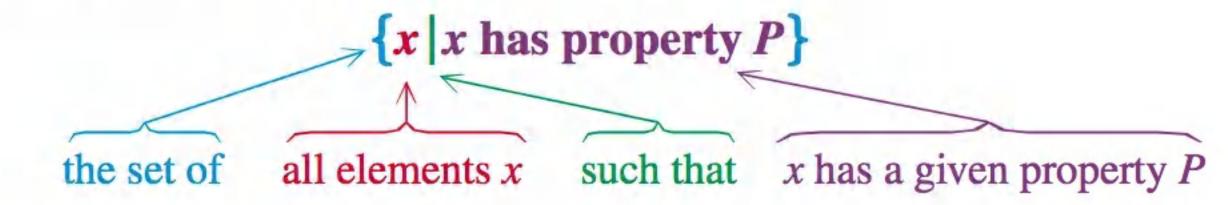
OBJECTIVES

1 Consider the set.

$$\left\{0, 10, \frac{3}{10}, 52, 98.6\right\}$$

(a) Which elements of the set are natural numbers?

Work Problem 1 at the Side.


A variable is a symbol, usually a letter, used to represent an unknown number or to define a set of numbers. For example,

 $\{x | x \text{ is a natural number between 3 and 15}\}$

(read "the set of all elements x such that x is a natural number between 3 and 15") defines the following set.

 $\{4, 5, 6, 7, \dots, 14\}$

The notation $\{x | x \text{ is a natural number between 3 and 15}\}$ is an example of set-builder notation.

(b) Which elements of the set are whole numbers?

Answers

1. (a) 10 and 52 (b) 0, 10, and 52

2 Chapter R Review of the Real Number System

2 List the elements in each set.
(a) {x | x is a whole number less than 5}

(b) $\{y | y \text{ is a natural number}$ greater than 12 $\}$

3 Use set-builder notation to describe each set.
(a) {0, 1, 2, 3, 4, 5}

EXAMPLE 1 Listing the Elements in Sets

List the elements in each set.

(a) $\{x | x \text{ is a natural number less than 4}\}$

The natural numbers less than 4 are 1, 2, and 3. This set is $\{1, 2, 3\}$.

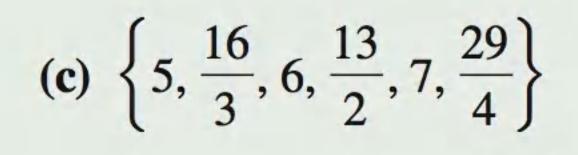
(b) $\{y | y \text{ is one of the first five even natural numbers}\}$ is $\{2, 4, 6, 8, 10\}$.

(c) $\{z | z \text{ is a natural number greater than or equal to 7}$

The set of natural numbers greater than or equal to 7 is an infinite set, written with ellipsis points as

{7, 8, 9, 10, ... }.

Work Problem (2) at the Side.


EXAMPLE 2 Using Set-Builder Notation to Describe Sets

Use set-builder notation to describe each set.

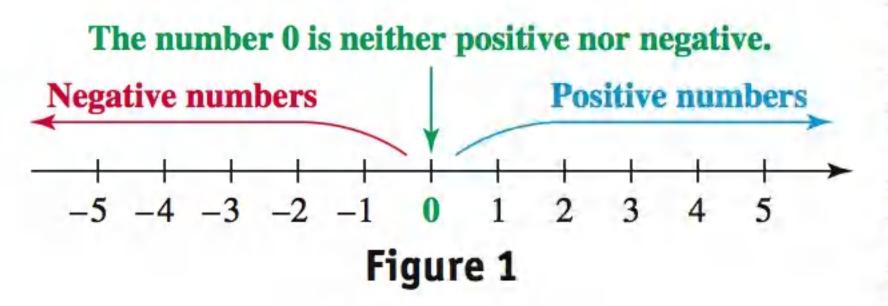
(b) $\{7, 14, 21, 28, \dots\}$

Graph the elements of each set.
(a) {-4, -2, 0, 2, 4, 6}

(b) $\left\{-1, 0, \frac{2}{3}, 2.5\right\}$

(a) $\{1, 3, 5, 7, 9\}$

There are often several ways to describe a set with set-builder notation. One way to describe the given set is


 $\{x | x \text{ is one of the first five odd natural numbers}\}.$

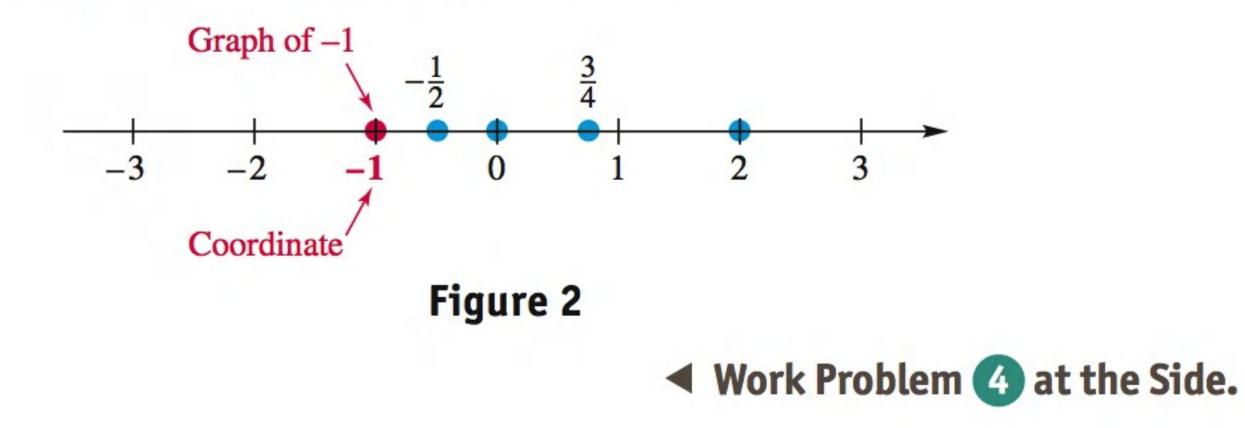
(b) {5, 10, 15, ... }

This set can be described as $\{x | x \text{ is a positive integer multiple of 5}\}$.

Work Problem 3 at the Side.

OBJECTIVE 2 Use number lines. A good way to get a picture of a set of numbers is to use a number line. See Figure 1.

To draw a number line, choose any point on the line and label it 0. Then choose any point to the right of 0 and label it 1. Use the distance between 0 and 1 as the scale to locate, and then label, other points.


The set of numbers identified on the number line in Figure 1, including positive and negative numbers and 0, is part of the set of integers.

Answers

- **2.** (a) $\{0, 1, 2, 3, 4\}$
 - **(b)** {13, 14, 15, ... }
- 3. (a) One answer is $\{x | x \text{ is a whole number less than 6}\}$.
 - (b) One answer is $\{x | x \text{ is a positive integer multiple of 7}\}$.
- - (c) + + + + + + + +4 5 6 7 8

$$I = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \}$$
 Integers

Each number on a number line is the **coordinate** of the point that it labels, while the point is the **graph** of the number. Figure 2 shows a number line with several selected points graphed on it.

The fractions $-\frac{1}{2}$ and $\frac{3}{4}$, graphed on the number line in **Figure 2**, are examples of *rational numbers*. A **rational number** can be expressed as the quotient of two integers, with denominator not 0. The set of all rational numbers is written as follows.

$$\left\{\frac{p}{q} \middle| p \text{ and } q \text{ are integers, } q \neq 0 \right\}$$
 Rational numbers

The set of rational numbers includes the natural numbers, whole numbers, and integers because these numbers can be written as fractions.

Examples: $14 = \frac{14}{1}$, $-3 = \frac{-3}{1}$, and $0 = \frac{0}{1}$

A rational number written as a fraction, such as $\frac{1}{8}$ or $\frac{2}{3}$, can also be expressed as a decimal by dividing the numerator by the denominator.

 $\underbrace{\begin{array}{c} 0.125 \\ 8 \end{array}}_{0.1000} \leftarrow \text{Terminating decimal} \\ (rational number) \\ 9 \end{aligned}} \left(\begin{array}{c} 0.666 \\ 3 \end{array} \right) \underbrace{\begin{array}{c} 0.666 \\ 3 \end{array}}_{18} \leftarrow \text{Repeating decimal} \\ (rational number) \\ 18 \end{aligned}} \right)$

$$\frac{\frac{8}{20}}{\frac{16}{40}}$$

$$\frac{40}{0} \leftarrow \text{Remainder is 0.}$$

$$\frac{1}{8} = 0.125$$

$$\frac{18}{20}$$

$$\frac{18}{20}$$

$$\frac{18}{20}$$

$$\frac{18}{2} \leftarrow \text{Remainder is never 0.}$$

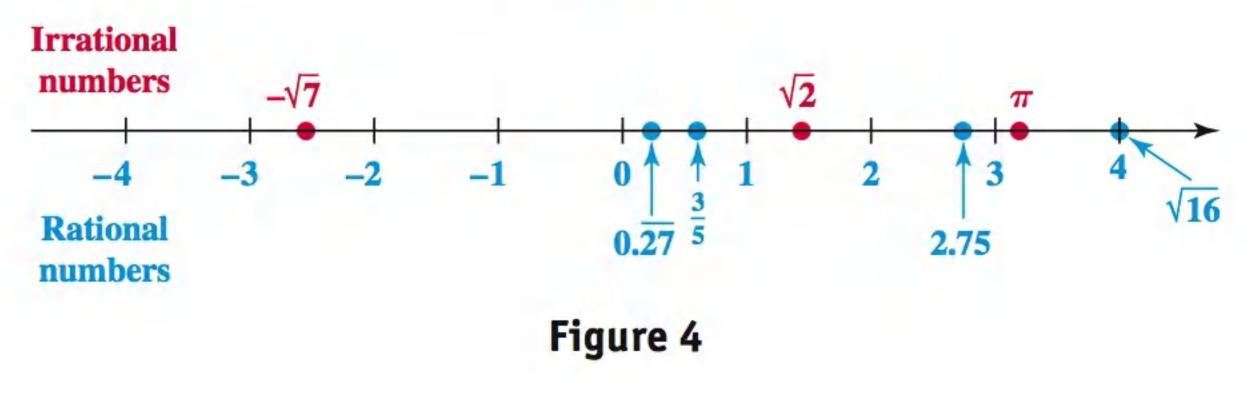
$$\frac{2}{3} = 0.\overline{6} \leftarrow \text{A bar is written over the repeating digit(s).}$$

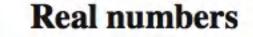
Thus, terminating decimals, such as $0.125 = \frac{1}{8}$, $0.8 = \frac{4}{5}$, and $2.75 = \frac{11}{4}$, and decimals that have a repeating block of digits, such as $0.\overline{6} = \frac{2}{3}$ and $0.\overline{27} = \frac{3}{11}$, are rational numbers.

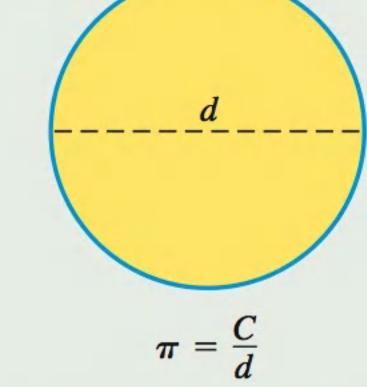
Decimal numbers that neither terminate nor repeat, which include many square roots, are *irrational numbers*.

 $\sqrt{2} = 1.414213562...$ and $-\sqrt{7} = -2.6457513...$ Irrational numbers

Note


Some square roots, such as $\sqrt{16} = 4$ and $\sqrt{\frac{9}{25}} = \frac{3}{5}$, are rational.


A decimal number such as 0.010010001... has a pattern, but it is irrational because there is no fixed block of digits that repeats. Another irrational number is π . See Figure 3.



Some rational and irrational numbers are graphed on the number line in **Figure 4.** The rational numbers together with the irrational numbers make up the set of **real numbers**.

Every point on a number line corresponds to a real number, and every real number corresponds to a point on the number line.

 π , the ratio of the circumference of a circle to its diameter, is approximately equal to 3.141592653....

Figure 3

- 4 Chapter R Review of the Real Number System
- 5 List the numbers in the following set that are elements of each set.

 $\left\{-2.4, -\sqrt{1}, -\frac{1}{2}, 0, 0.\overline{3}, \sqrt{5}, \pi, 5\right\}$


(a) Whole numbers

Sets of Numbers	
Natural numbers	$\{1, 2, 3, 4, 5, 6, \ldots\}$
Whole numbers	$\{0, 1, 2, 3, 4, 5, 6, \ldots\}$
Integers	$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$
Rational numbers	$\left\{ \frac{p}{q} p \text{ and } q \text{ are integers, where } q \neq 0 \right\}$
	<i>Examples:</i> $\frac{4}{1}$, 1.3, $-\frac{9}{2}$, $\frac{16}{8}$ or 2, $\sqrt{9}$ or 3, 0. $\overline{6}$
Irrational numbers	{x x is a real number that cannot be repre- sented by a terminating or repeating decimal}
	Examples: $\sqrt{3}, -\sqrt{2}, \pi, 0.010010001$
Real numbers	<pre>{x x is a rational or an irrational number}*</pre>

(b) Rational numbers

Figure 5 shows the set of real numbers. *Every real number is either rational or irrational.* Notice that the integers are elements of the set of rational numbers and that the whole numbers and natural numbers are elements of the set of integers.

(c) Irrational numbers

Figure 5

Answers

5. (a) $\{0, 5\}$ (b) $\left\{-2.4, -\sqrt{1}, -\frac{1}{2}, 0, 0.\overline{3}, 5\right\}$ (c) $\{\sqrt{5}, \pi\}$

EXAMPLE 3 Identifying Examples of Number Sets List the numbers in the following set that are elements of each set. $\begin{cases} -8, -\sqrt{2}, -\frac{9}{64}, 0, 0.5, \frac{2}{3}, 1.\overline{12}, \sqrt{3}, 2, \pi \\ (a) Integers (b) Rational numbers (b) Rational numbers (b) Rational numbers (c) Irrational numbers (c) Irrational$

^{*}An example of a number that is not real is $\sqrt{-1}$. This number, part of the *complex number system*, is discussed later in the text.

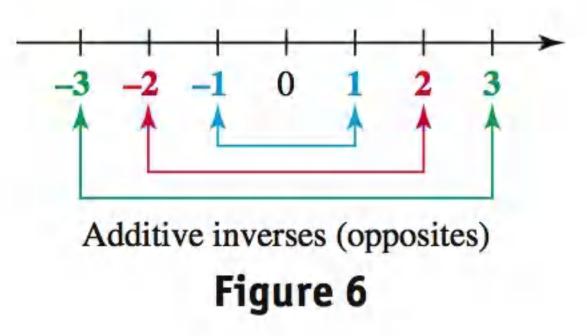
Determining Relationships between Sets of Numbers EXAMPLE 4

Decide whether each statement is *true* or *false*. If it is false, tell why.

(a) All irrational numbers are real numbers.

This is true. As shown in Figure 5 on the previous page, the set of real numbers includes all irrational numbers.

(b) Every rational number is an integer.


This statement is false. Although some rational numbers are integers, other rational numbers, such as $\frac{2}{3}$ and $-\frac{1}{4}$, are not.

Work Problem 6 at the Side.

OBJECTIVE 4 Find additive inverses. Look at the number line in Figure 6. For each positive number, there is a negative number on the opposite side of 0 that lies the same distance from 0. These pairs of numbers are additive inverses, opposites, or negatives of each other. For example, 3 and -3 are additive inverses.

Decide whether the statement is (6) true or false. If false, tell why.

- (a) All whole numbers are integers.
- (b) Some integers are whole numbers.
- (c) Every real number is irrational.

Additive Inverse

For any real number a, the number -a is the **additive inverse** of a.

We change the sign of a number to find its additive inverse. As we shall see later, the sum of a number and its additive inverse is always 0.

Uses of the Symbol -

The symbol "-" can be used to indicate any of the following.

- 1. A negative number, as in -9, read "negative 9"
- 2. The additive inverse of a number, as in "-4 is the additive inverse of 4"

3. Subtraction, as in 12 - 3, read "12 minus 3"

In the expression -(-5), the symbol "-" is being used in two ways: the first - indicates the additive inverse (or opposite) of -5, and the second indicates a negative number, -5. Because the additive inverse of -5 is 5,

-(-5) = 5.

This example suggests the following property.

-(-a)For any real number a, -(-a) = a.

Answers

6. (a) true (b) true (c) false; Some real numbers are irrational, but others are rational numbers.